Cyclist-related factors
A previous study [10] showed that the prevalence of bicycle injury among junior high school students in the Yangpu District of Shanghai, China is 8.71%. In the current research, the prevalence of bicycle injury in Chaoshan rural areas is 28.3%, which is much higher than that in the city. Therefore, bicycle injury prevention is a critical issue in the rural areas of China. Many studies show that younger age is a risk factor of bicycle injury. For instance, in America, one-fifth of bicycle-related injuries occurs in children 15 years and younger [11] with peak prevalence of bicycle-related injuries and deaths occurring within the 9–15 years-old age group [12]. Another study also found that risk of serious injury is increased by young age (<6 years) [13]. However, in this study, the prevalence of bicycle injury in different age groups (11–13, 14–16, 17–19) are nearly the same (27.8%, 28.5%, 27.2%, P = 0.961, Table 1). Therefore, a bicycle education program should focus on junior high students of all age groups, and not only the younger students.
Being male is associated with an increased risk for all types of injuries [14]. This study showed that the prevalence of injury in males (60.7%) is higher than that in females (39.3%).This supports previous research on bicycle injuries of children, where a male-to-female ratio of 3:1 has been reported [2]. This may be related to the nature of males. Firstly, males tend to have more impulsive, un-controlled behavioral styles that lead to a higher risk of unintentional injury [15]. Secondly, males are more likely to attribute injuries to bad luck, and females to their own behaviors and decisions, leading males to repeat injury risk behaviors more often than females [16]. So we should pay more attention to male students in order to reduce their high injury rate. Parental supervision is among the most effective behavioral techniques for reducing pediatric injury risk [17]. Adult supervisors can verbally intervene when male students begin to behave in a dangerous way. Supervision causes un-controlled children to reduce their tendency toward overestimation of ability and to judge their abilities more cautiously [18]. Moreover, bicycle injury education should be emphasized, especially for male students, in order to correct their wrong perspective (e.g. attributing injuries to bad luck) about injury. Also, the Bike Smart program (an eHealth product that utilizes video, animations, and still images to train children to acquire the key skills for bicycle safety) is a good way to improve males’ cycling skills, because studies suggest that Bike Smart can be a low cost, effective component of safety training packages that include both skills-based and experiential training [12]. A walking school bus (a group of children walking to school with one or more adults) is a proven way to reduce cycling time, but few statistics are available to show whether it is really safer for children in China [19].
Basic knowledge of and attitude towards bicycle injury prevention
Attitudes towards bicycle safety play an important role in predicting child safety practices [20]. In this study, we investigated the attitudes of students on bicycle injuries (opinion on necessity of setting up traffic rules, opinion on whether bicycle injury is preventable, and willingness to learn about prevention of bicycle injuries). Results show that students who had a positive attitude towards bicycle injury prevention (thinking that setting up traffic rules was necessary, feeling that bicycle injury is preventable, and willing to learn about prevention of bicycle injuries) had a lower prevalence of injury than those who did not. Also, a previous study has suggested that better road safety knowledge is a protective factor for road traffic injuries among Chinese school children [21]. Specifically, a bicycling education program implemented in selected New Jersey schools and summer camps has shown that using road sign identification as an educational item in the program is effective in reducing bicycle crashes [22]. In our study, traffic marking recognition “for vehicle only” was also included. However, we found that it was only of borderline significance on bicycle injury (P = 0.509) according to chi-squared test. Why the result of our study was different from that of the New Jersey study could relate to the fact that there are few traffic signs on roads in Chaoshan rural areas, so even if students could recognize the markings in the questionnaire, it might not prevent them from bicycle injuries because they seldom encounter traffic markings on the road. Therefore, bicycle education programs focusing on recognition of traffic markings “for vehicles only” are not recommended before traffic signs are well established on the roads.
Lifestyle and bicycle riding behaviors
Accidents involving child cyclists are often the result of the children playing, doing tricks, riding too fast or losing control [23]. These behaviors may sometimes help children gain experience and training in bicycle handling skills. However, practicing good habits is more important to enhance safety. Also, caution and rational behaviors should be emphasized more on the roads. A study in Taipei shows that speeding is a factor related to severe head injury (P = 0.031) [24]. In our study, while riding at a high speed (≥20 km/h) is correlated with a higher prevalence of injury (79.4%), riding at a low speed (≤10 km/h) is also related to a higher rate of injury (55.4%), compared to those riding at a moderate speed (>10 to <20 km/h, 23.6%). Slower speed may be associated with longer exposure time. Thus we advise students to ride at a moderate speed (>10 to <20 km/h), rather than low (≤10 km/h) or high (≥20 km/h) speeds, for prevent bicycle injury prevention.
The data shows that coffee or strong tea consumption is related to bicycle injuries. it can make the riding students more excited, and cause the bicycle injury. Therefore, avoiding coffee and strong tea consumption is recommended for bicycle injury prevention. Injured students show bad habits, such as using communication devices (like mobile phones) while riding. This result supports prior research from Japan, which indicates that there is a significant relationship between phone usage while riding a bicycle and bicycle crash/near-crashes [25]. Also, mental status could play a role in bicycle injury. Being sleepy or being in bad mood (anger, grief, etc.) while riding could easily distract the riders and thus increases the risk of accidents. In order to reduce both the occurrence and severity of bicycle injury, all of these bad habits need to be avoided. In addition, law enforcers should do their job to prevent harmful behaviors in the first place, such as using mobile phones [26].
In this study, 65.3% of the students were willing to acquire more knowledge on bicycle injury prevention. Teachers, parents or other close relatives of children are recommended to be educated on bicycle injury prevention so as to pass on the knowledge to children to prevent potential injuries. More importantly, teachers and parents should set a good example by their own actions, such as traffic rule obedience, being cautious and attentive in using bicycles, etc.
Bicycle-related factors
Our research reveals that 8.1% of 2075 students perform regular bicycle maintenance (Table 4). Prior research shows that several defects result in single-bicycle crashes (i.e. a fall or obstacle collision): the chain broke off, the tire inflation was too low resulting in skidding while cornering, the fender or the front fork broke off, a wheel, saddle, or handlebars were loose or broke off [27]. However, in this study, there was no significant difference between the prevalence of bicycle injuries among students who maintained their bicycles periodically and those who did not (P = 0.593). Actually, the former group has slightly higher injury prevalence (30.2%) than the latter group (28.2%). The reason is probably that students who experience bicycle injuries care more about their bicycles, and thus are more likely to maintain their bicycles periodically after bicycle injury. Further research is required to identify whether there is a difference in habits of bicycle maintenance before and after injury and, also, whether bicycle injury prevalence changes before and after the formation of this habit. We do not recommend junior high school students to replace their old bicycle with a new one in order to prevent bicycle injury because we find that bicycle age is not related to bicycle injury prevalence (P = 0.398), and the prevalence of injury for different bicycle age groups are similar, around 30%.
Road-related factors
According to research done in Hungary, terrible road conditions are among the most important causes of bicycle traffic injury among rural children [2]. Our research finds that riding on a motor lane (OR = 2.414, 95% CI = 1.474 ~ 3.954) is a risk factor for bicycle injury. Riding on a motor lane violates traffic rules and increases the risk of a bicycle crash by motor vehicles. Previous research also indicates that in bicycle accidents, involvement in a collision with a motor vehicle increases the risk of severe injury by 3.6-fold [28].
The crash involvement rate per 1000 cyclists has been shown to be 11.8 on shared paths compared to 5.8 on cycle lanes [29]. It has been suggested that having a bicycle-friendly infrastructure (e.g. bike routes, painted bike lanes) is associated with a low injury risk [30]. Road infrastructure that separates motor vehicles from bicycles is common in some cycling countries [31, 32]. Providing a one-way bicycle path for bicycle users can reduce the chance of severe injury [33]. However, in this study, riding on a non-motor lane (OR = 1.648, 95% CI = 1.161 ~ 2.339) is also a risk factor for bicycle injury compared with riding on a combination-type road. We attribute this finding to the fact that in rural areas of China, roads are seldom divided into specific lanes. All types of vehicles ride on the same lane (combination-type road). Therefore, cyclists are more cautious to avoid crashes with vehicles when they are on this type of road. On the contrary, cyclists may not be highly alert on non-motor lanes, thinking that these lanes are much safer. However, large numbers of drivers may not obey traffic rules and may take up the whole non-motor lane for convenience. Accidents happen under these circumstances. Therefore, separating motor vehicles from non-motor ones may help to improve cyclist safety in urban areas. But in Chaoshan rural areas of China specifically, more education is required to improve road users’ awareness of traffic rule obedience and accident prevention before non-motor lanes can really play a role in bicycle injury prevention. Moreover, the traffic department should set up an effective reward and punishment system that would contribute to better administration of traffic rules and regulations.
In addition, insufficient infrastructure of rural roads and terrible road conditions are related to higher rates of bicycle injury in rural China. We show that non-intact road situations (OR = 2.261, 95%CI = 1.632 ~ 3.133) are important risk factors for bicycle injuries. The prevalence of students who ride on non-intact roads is much higher than those who ride on intact roads (43.1% and 30.4%). Moreover, compared to dry road surfaces, ponding or humid road surfaces are related to a higher prevalence of bicycle injuries (dry: 18.8%, ponding: 46.5%, humid: 47.9%). There is also a significant difference among prevalence on different road materials. Roads composed of sand and rocks, as well as asphalt, are associated with a higher bicycle injury rate compared with cement roads (sand and rocks: 50.6%, asphalt: 47.4% cement: 21.3%). the students are used with riding on the cement roads, which are most common in rural China. In summary, intactness, dryness and cement road play essential roles in bicycle injury prevention. All of these factors should be managed by the government. Government intervention can be effective in lowering the rates of injury [34]. In Australia, bicycle-related head injuries have steadily declined in the years after 2006, the year associated with an increase in spending on cycling infrastructure [35]. According to this research, the government must take measures to improve road conditions, which include repairing broken and uneven roads, separating road sections that are under construction with warning signs, equipping roads with effective drainage systems, and paving roads with cement instead of sand and rocks. Much work still needs to be done.
Study limitations
In this study, the accuracy of self-reports may be compromised because some health-risk behaviors are difficult to recall and some are so sensitive that respondents may not want to report them. Also, the use of self-report data on road traffic risk behaviors and injuries may be subject to social desirability biases [36]. Moreover, in recalling what happened, the injured cyclists usually examine their own behaviors more critically. Thus, they are more likely to admit to negative behaviors than the uninjured cyclists. Considering the reality of Chaoshan rural areas of China, where students hardly wear a helmet to go to school, we excluded the questions on helmet usage, although in foreign countries, it has been proven that a primary strategy to prevent bicycle-related injuries is the promotion of bicycle helmet use [37]. In addition, exposure time of bicycle injuries and the cluster effect are two factors which should be taken into consideration [38]. This current research does not cover these parts and we will take them for the further research.