Principal findings
This study has shown that multimorbidity is associated with substantial and progressive reductions in Health Related Quality of Life (HRQoL), as measured by a Preference_Weighted Health Related Quality of Life score (PW_HRQoL). This score provided a single summary measure of overall health, by weighting mental and physical states by their perceived importance as part of overall HRQoL. The use of a single score enables a simple and consistent assessment of the impact of conditions and how this varies across the population.
The clinical significance of multimorbidity is considerable. The PW_HRQoL measure used (SF-6D) ranges from 0.29 (worst health) to 1 (perfect health). The mean PW_HRQoL score was 0.84, and the average reduction in the score of respondents suffering from multimorbidity was 0.141 (compared to respondents with no or one longstanding condition) - a reduction of 17%.
Multimorbidity was associated with larger reductions in PW_HRQoL scores amongst participants living in the most deprived areas, with this deprivation effect most marked in younger multimorbid adults. While it is known that those living in the most deprived areas have a higher prevalence of multimorbidity of longstanding conditions [18], this is the first study to show that the impact of multimorbidity on PW_HRQoL score is also significantly greater in more deprived areas.
Comparison with other studies
Previous studies also showed that PW_HRQoL falls markedly as the number of conditions increase. However, these studies were limited to six conditions (CVD and respiratory) [12, 13]. Further, no analysis of the impact of multimorbidity conditional upon age and socioeconomic position was undertaken.
Strengths and weaknesses
The SHeS 2003 included 40 longstanding conditions which is a greater amount than most previous studies [5, 6]. The prevalence of obesity as an independent longstanding condition was not considered in the analysis. Obesity was not included in the SHeS definition of longstanding conditions, and the construction of a variable may have introduced double counting given several conditions included in the analysis are likely to be symptoms of obesity.
The inclusion of the SF-12 within the SHeS 2003 enabled a PW_HRQoL score to be estimated (using the SF-6D) permitting investigation into the association of multimorbidity and overall HRQoL, rather than separately on physical and mental health which most previous studies have done. Further, the size of the dataset and the comprehensive definition of socioeconomic deprivation (SIMD) meant that associations could be estimated by age group and quintiles of socioeconomic deprivation.
By using PW_HRQoL scores to estimate the burden of multimorbidity provides consistency with how economists measure the (HRQoL) burden of illness, termed health utilities; changes in which can be used in economic evaluation to assess the cost effectiveness of interventions. The clinical significance of multimorbidity as measured by PW_HRQoL demonstrates the potential need to develop interventions to lessen the impact of multimorbidity, rather than the traditional focus on single conditions.
The use of cross-sectional survey data limits the analysis to measurements of association. In addition, the SHeS does not provide data on duration or severity of conditions. These weaknesses are common to previous studies. A further weakness in national cross-sectional studies is that there is usually a poorer response rate within communities of lower socioeconomic position. We analysed the SHeS by quintiles of socioeconomic deprivation, as measured by the Scottish Index of Multiple Deprivation (SIMD). The most deprived quintile was underrepresented (16%) and this may have comprised representativeness, if for instance missing respondents were skewed toward the most deprived affecting case mix. However, the direction of any potential bias in our estimates is unknown.
A further potential limitation is that the sample was for 2003. It is possible that the nature of the relationship between PW_HRQoL, multimorbidity and deprivation may have changed over time. It is difficult to assess the likelihood of this limitation. The SHeS 2003 was the only SHeS survey that has included the SF-12 to enable this analysis to be undertaken.
Future research
Further work could usefully focus on longitudinal studies to assess the causal impact of incurring longstanding conditions and developing multimorbidity throughout the life course [19, 20]. Such studies could encompass both longitudinal cohort methods, and qualitative studies to better understand why the impact of multimorbidity varies by deprivation and age.
The hypothesis that the impact of multimorbidity on PW_HRQoL would be greater in more deprived groups compared to less deprived groups was largely corroborated. However, the deprivation gradient was not uniform, with the fourth and fifth most deprived quintiles having experienced similar declines in PW_HRQoL.
The general deprivation gradient may be the result of the existence of the ‘inverse care law’ [15], where the availability of services does not reflect the greater needs of deprived populations may result in insufficient health care resources to help people manage their conditions. Further, this may be compounded by deprived groups having reduced levels of personal capacity (e.g. reduced health literacy, agency) or community support available with which to manage or mitigate the impact of multimorbidity [14]. The impact of multimorbidity in younger (20–44 years) people in the most deprived quintile was 80% greater than those in the least deprived quintile. In addition, the deprivation gradient may (also) be due to case-mix where young deprived groups can suffer from greater mental health problems [21]. It is important to further investigate the associations between deprivation and multimorbidity to assess both its nature and the reasons underlying observed differences, in order to inform how best to address the deprivation gradient.
The inverse relationship between increasing age and the impact of multimorbidity may reflect greater levels of impairment due to multimorbidity in younger groups, or it may simply reflect that people of different ages adapt their expectations in different ways in response to living with chronic conditions. The reversal of this age gradient for the least deprived quintile needs to be explored further.
The paper stratified the SHeS into three age groups, with the eldest group 65 years and above. Due to statistical power concerns it was not possible to stratify age further. However, given that the incidence of multimorbidity increases further in older age groups [18], it is important, where possible, to investigate the consequent impacts on HRQoL.
The analysis focussed on the association between counts of conditions and HRQoL, rather investigating the impact of particular case-mix. A study by Fortin [5] found that different combinations of conditions are associated with different impacts on physical and mental health, as measured separately using the SF-36. Future work could usefully undertake a similar exercise exploring how case-mix impacts on an overall PW_HRQoL score (combining physical and mental health). Using a single score would permit systematic comparisons of the overall severity of case-mix, and identify patient groups who experience the greatest reductions in quality of life.
It is important to assess to what extent the reduction in PW_HRQoL from multimorbidity is actually modifiable to inform the development of interventions. Research could usefully investigate individual and community capacity to support effective self-management and adjustment to conditions.
Finally, estimating the burden of multimorbidity on PW_HRQoL would also provide consistency with how economic evaluation measures the impacts of interventions. PW_HRQoL scores (termed health utilities by economists) are used to generate quality adjusted life years (QALYs) by weighting length of life with quality of life, measured by the scores. Given that there has been limited research on this topic to date, assessing the burden of multimorbidity using PW_HRQoL scores in the general population may help strengthen the economic case for funding the development and implementation of interventions.