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Abstract 

Background Assessing disparities in injury is crucial for injury prevention and for evaluating injury prevention strate‑
gies, but efforts have been hampered by missing data. This study aimed to show the utility and reliability of the injury 
surveillance system as a trustworthy resource for examining disparities by generating multiple imputed companion 
datasets.

Methods We employed data from the National Electronic Injury Surveillance System‑All Injury Program (NEISS‑AIP) 
for the period 2014–2018. A comprehensive simulation study was conducted to identify the appropriate strategy for 
addressing missing data limitations in NEISS‑AIP. To evaluate the imputation performance more quantitatively, a new 
method based on Brier Skill Score (BSS) was developed to assess the accuracy of predictions by different approaches. 
We selected the multiple imputations by fully conditional specification (FCS MI) to generate the imputed companion 
data to NEISS‑AIP 2014–2018. We further assessed health disparities systematically in nonfatal assault injuries treated 
in U.S. hospital emergency departments (EDs) by race and ethnicity, location of injury and sex.

Results We found for the first time that significantly higher age‑adjusted nonfatal assault injury rates for ED visits 
per 100,000 population occurred among non‑Hispanic Black persons (1306.8, 95% Confidence Interval [CI]: 660.1 – 
1953.5), in public settings (286.3, 95% CI: 183.2 – 389.4) and for males (603.5, 95% CI: 409.4 – 797.5). We also observed 
similar trends in age‑adjusted rates (AARs) by different subgroups for non‑Hispanic Black persons, injuries occurring 
in public settings, and for males: AARs of nonfatal assault injury increased significantly from 2014 through 2017, then 
declined significantly in 2018.

Conclusions Nonfatal assault injury imposes significant health care costs and productivity losses for millions of peo‑
ple each year. This study is the first to specifically look at health disparities in nonfatal assault injuries using multiply 
imputed companion data. Understanding how disparities differ by various groups may lead to the development of 
more effective initiatives to prevent such injury.

Keywords Health Disparity, Missing Data, Multiple Imputation, Non‑fatal Assault Injury, National Electronic Injury 
Surveillance System‑All Injury Program (NEISS‑AIP)

Introduction
Over a million people are treated in emergency depart-
ments for nonfatal assault injuries in the United States 
every year [1]. Such injuries are also a leading cause of 
mortality among children and young adults, and many 
result in life-long disabilities and health consequences 
[2]. These health issues can impose heavy costs on indi-
viduals and society. The Centers for Disease Control 
and Prevention estimates the 2019 nonfatal injury costs 
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$2.0 trillion in medical care and lost productivity, which 
is more than four times as high as the 2013 estimate 
($457 billion) [3]. According to Moore et. al., there are 
disparities in injury incidence and the burden of injury 
falls disproportionately on “communities of color, those 
who are economically disadvantaged, and those who are 
geographically isolated” [4]. Understanding how health 
disparities differ by various groups may lead to the devel-
opment of more effective initiatives to prevent such 
injury. Investigating disparities in health between groups 
requires accurate identification and categorization [5, 6]. 
However, information about key indicators for identi-
fication such as race/ethnicity, sex, age, and geographic 
location may be missing or not collected in large survey 
data [7–9]. This lack of complete information may cause 
inaccurate estimation of disparities, especially when the 
proportion of missing data is high. Efforts to address 
health disparities in injury research have been hampered 
by missing data [10–12]. Complete data are essential for 
identifying disparities, minimizing bias, and for improv-
ing statistical power and efficiency.

NEISS-AIP collects data from a nationally representa-
tive sample of hospital emergency departments (EDs) 
using specific guidelines for recording the primary diag-
nosis and mechanism of all types of injuries treated [1, 
13]. It can be used to (1) measure the magnitude and 
distribution of nonfatal injuries in the United States; 
(2) monitor unintentional and violence-related injuries 
over time; (3) discover emerging injury problems; and 
(4) set national priorities. Analysing and disseminating 
these surveillance data will help support the mission of 
reducing all types and causes of injuries in the United 
States [14]. However, as with any large-scale data collec-
tion effort, NEISS-AIP often contains missing data. For 
the data years of 2014–2018, more than half (57.1%) of 
records reported at least one missing variable. In par-
ticular, patient race/ethnicity (RACE) and location of 
injury (LOC) had the highest proportions of missing 
data (32.7% for RACE and 35.3% for LOC). Identifying 
disparities requires accurate data on health status and 
individual determinants of health for subgroups of the 
population. These missing key indicators can hinder the 
use of NEISS-AIP in investigating health disparities.

Missing data continues to limit the analysis of health-
related disparities and their causes. The most widely 
adopted strategy to overcome the missing data barrier is 
to omit observations with missing values and perform a 
complete case analysis (CCA). However, the cumulative 
effect of missing data in several variables often leads to 
exclusion of a substantial proportion of original sample. 
The results from CCA may be biased because the com-
plete case can be unrepresentative of the full popula-
tion. CCA may suffer from the loss of statistical precision 

and risk of bias, since incorrect handling of missing data 
might result in drawing the wrong conclusion, as effect 
estimates and error measurements may be altered [15]. 
Multiple imputation (MI) is widely recognized as another 
standard approach for handling missing data, particu-
larly when data are partially missing for multiple vari-
ables [16–18]. The missing values are imputed based on a 
model that relates the missing variable to observed vari-
ables, which generates multiple complete datasets with-
out missingness. Estimates and standard errors (SE) are 
calculated for each imputation set and pooled into one 
overall estimate and SE. MI predicts data based on the 
known variables with the incorporation of missing data 
uncertainty, which leads to more accurate estimates than 
single imputation. It is a powerful and statistically valid 
method for creating imputations in large datasets with 
complex data structures [19, 20].

Accounting for missing data is essential for facilitating 
injury research into health disparities [21–23]. The pre-
sent study aims to make NEISS-AIP a more useful and 
reliable resource for examining disparities by generating 
multiple imputed companion datasets. We conducted a 
comprehensive simulation study to identify the appropri-
ate MI method for handling missing data in NEISS-AIP. 
We selected the multiple imputations by fully conditional 
specification (FCS MI) to generate the imputed compan-
ion data to NEISS-AIP 2014–2018. These complete data 
were used to further assess health disparities by race and 
ethnicity, location of injury, and sex in nonfatal assault 
injuries treated in U.S. hospital EDs. To our knowledge, 
this study is the first to assess health disparities in injury 
using multiple imputed NEISS-AIP data.

Methods
NEISS‑AIP 2014–2018 Data
The NEISS-AIP is designed to provide national inci-
dence estimates of all types and external causes of non-
fatal injuries and poisonings treated in U.S. hospital EDs 
[13]. Data on injury-related visits were obtained from 
a national sample of 66 of 100 NEISS hospitals, which 
were selected as a stratified probability sample of hos-
pitals in the United States with a minimum of six beds 
and a 24-h ED. Data were weighted by the inverse of the 
probability of selection to produce national estimates. 
The sample included separate strata for very large, large, 
medium and small hospitals, defined by the number of 
annual ED visits per hospital. Trained, onsite hospital 
coders abstracted data for injury-related cases from ED 
records at NEISS hospitals. NEISS-AIP is providing data 
on approximately 600,000 cases annually. Data collected 
include age, race/ethnicity, gender, principal diagnosis, 
primary body part affected, consumer products involved, 
disposition at ED discharge, the locale where the injury 
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occurred, work-relatedness, and a narrative descrip-
tion of the injury circumstances. Also, major categories 
of external cause of injury and of the intent of injury are 
being coded for each case in a manner consistent with 
the International Classification of Diseases, Tenth Revi-
sion, Clinical Modification (ICD-10-CM) coding rules 
and guidelines. NEISS-AIP provides an excellent data 
source for monitoring national estimates of injuries over 
time. However, incomplete NEISS-AIP data poses chal-
lenges for identifying health disparities and for analysing 
the underlying causes.

Multiple Imputation (MI) Method
To create a full dataset and to minimize bias due to sys-
tematic differences between complete records and those 
with missing data, MI was performed. MI is a three-step 
approach following Rubin’s rules [24] to estimation of 
incomplete data: (1) imputation of missing values from 
a so-called “imputation model” repeated m times, which 
results in the m complete imputed data set; (2) the fit-
ting of an “analysis model” (i.e., the model of interest) to 
each of the m imputed data sets separately; (3) pooling 
of the m sets of estimates thus obtained to give an over-
all set of estimates and corresponding standard errors 
[25–31]. The general procedure for MI was described in 
Supplementary Text A. To identify important covariates 
in the imputation model, Cramer’s V statistic was used 
to measure the correlation between the missing variable 
and covariates [30]. The covariate was included in the 
imputation model if it correlated with an absolute value 
of a Cramer’s V greater than 0.05 (all covariates used are 
summarized in Supplementary Table S1). All statistical 
analyses, including MI methods, were conducted using 
SAS version 9.4 (SAS Institute, Cary, NC).

Two major approaches in MI exist: joint modeling (JM) 
and fully conditional specification (FCS) [27]. JM impu-
tations involve specifying a multivariate distribution for 
the missing data and drawing an imputation from their 
conditional distributions using Markov Chain Monte 
Carlo (MCMC) techniques. FCS imputations are gener-
ated sequentially variable-by-variable by specifying an 
imputation model for each missing variable given the 
other variables. FCS MI is a more flexible approach for 
creating imputations in large datasets which include both 
categorical and continuous variables [28, 29].

Simulation study
A comprehensive simulation study was performed on the 
2018 NEISS-AIP data year to illustrate and to distinguish 
the performance of various missing data approaches. 
The missing data pattern can influence the amount of 
information transferred between variables, so we first 
investigated the missing pattern in the NEISS-AIP 2018 

data to determine all possible intersections between dif-
ferent missing variable sets (Supplementary Table S2, 
total fifty-four patterns with at least one missing vari-
able were obtained). We then developed a Venn diagram 
to visualize the intersections and the cumulative missing 
percentage.

Given the complex data structure and the large sample 
size (over 600,000 cases collected in NEISS-AIP annu-
ally), it is impossible to simulate the NEISS-AIP using 
classic simulations. We developed a new simulation data-
set by imposing the missing data patterns on the subset of 
fully observed data in NEISS-AIP 2018. The missingness 
in the simulated data was generated using random sam-
pling without replacement to mimic all possible inter-
sections among missing variables. Each observation in 
the data set had an equal chance of being selected, once 
selected it couldn’t be chosen again. SAS PROC SUR-
VEYSELECT procedure was applied to generate a variety 
of random samples for the missing pattens [32]. As the 
true values of these missing data were already known 
from the non-missing data, the accuracy of imputed val-
ues could be assessed using the non-missing data as the 
standard control.

To evaluate the imputation performance more quanti-
tatively, we developed a new method based on the Brier 
Skill Score (BSS) to observe the performance difference 
[33–35]. The detailed algorithm of the BSS based new 
method was described in the Appendix. BSS is useful for 
envisioning the difference in imputation performance 
and for measuring the accuracy improvements of proba-
bilistic predictions. We performed the BSS comparison 
of the imputation performance for all categorical miss-
ing variables by two MI methods (JM and FCS), in which 
CCA was chosen as the reference strategy.

As the key covariate of interest, race/ethnicity informa-
tion is vital for measuring disparities across groups [8]. 
To assess the impact of MI on the overall distribution, 
we determined the distributions of race/ethnicity among 
the simulation dataset (before imputation), JM and FCS 
imputed data (after imputation), and the standard control 
(the non-missing data). For our analysis, race/ethnicity 
was recoded into four categories to make them compat-
ible with available annual bridged-race population esti-
mates used as denominators for the injury rates: White, 
non-Hispanic (White NH); Black or African American, 
non-Hispanic (Black NH); Hispanic; and Other NH. We 
combined Asian, non-Hispanic (Asian NH); American 
Indian or Alaska Native, non-Hispanic (AIAN NH); and 
Pacific Islander, non-Hispanic (PI NH) into one group as 
Other NH. Race bridging refers to making data collected 
using one set of race categories consistent with data col-
lected using a different set of race categories, to permit 
estimation and comparison of race-specific statistics at a 
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point in time or over time. Prior to 2021, reporting injury 
rates in these four mutually exclusive categories is con-
sistent with mortality reporting from National Center of 
Health Statistics and incidence reporting from National 
Cancer Institute [36, 37].

We compared crude nonfatal assault injury rates within 
the White NH group to illustrate the bias in injury rate 
estimates when using various missing data approaches. 
White NH group was selected for illustrative purposes 
since it had the largest proportion of population in the 
data. Nonfatal assault injuries were limited to those inju-
ries treated in the ED and resulting from physical vio-
lence by one or more persons; sexual assaults and injuries 
from legal intervention were excluded [13]. The absolute 
deviations of nonfatal assault injury rate estimates were 
calculated using the standard control rate as the refer-
ence. The 2014–2018 U.S. Census Bureau bridged-race 
population estimates were used to calculate nonfatal 
assault injury rates per 100,000 population.

Assessing disparities using FCS imputed companion data
FCS MI showed the best overall imputation performance 
based on the simulation study. We then implemented this 
approach on the NEISS-AIP data to impute the missing 
data in each year from 2014 to 2018 (The general SAS 
coding procedure for PROC MI using FCS statement was 
included in Supplementary Text B). Finally, all years of 
imputed data were merged to generate an imputed com-
panion dataset to the NEISS-AIP 2014–2018 data.

Next, we assessed health disparities by race/ethnic-
ity, location of injury, and sex using imputed compan-
ion data. To allow for accurate comparisons between 
groups with different age distributions, we calculated 
age-adjusted average annual rates of nonfatal assault 
injury per 100,000 population among hospital ED vis-
its by RACE, LOC, and SEX. The estimated nonfatal 
assault injury rates were age-adjusted to the 2000 U.S. 
standard population. We also displayed trend analysis 
for age-adjusted nonfatal assault injury rates by different 
groups in each year from 2014 to 2018. The significant 
differences in nonfatal assault injury rates across various 
groups were tested using t-tests, where p-values < 0.05 
were considered statistically significant. Analyses were 
conducted using SAS 9.4 (SAS Institute, Inc, Cary, NC), 
and 95% CIs and statistical tests accounted for the sam-
pling weights and complex survey design. Data were 
weighted by the inverse of the probability of selection to 
provide national estimates.

Results
Missing data in NEISS‑AIP 2014–2018
Table 1 shows the unweighted counts and percentages for 
all missing variables in NEISS-AIP data from 2014–2018. 
Due to the cumulative effect of missing data, more than 
half (57.1%) of records were missing at least one variable 
and only 42.9% had fully complete (non-missing) data. 
Figure 1 displays the trend for all missing variables from 
2014 to 2018. RACE and LOC had the highest propor-
tions of missing data across years (> 30%).

Table 1 Frequency analysis of missingness: unweighted counts and percentages for missing variables in NEISS‑AIPa, United States, 
2014–2018

a NEISS-AIP National Electronic Injury Surveillance System-All Injury Program
b LOC location where the injury occurred, RACE race and ethnicity, CAUSE external cause of injury, BDYPT primary body part affected, TYPE work-relatedness, AGE age in 
years, DISP disposition at emergency department discharge, SEX gender
c  Missing Total: the cumulative missing where observations had at least one missing variable
d  Non-missing Total: observations had no missing values

Missing  Variablesb 2014 2015 2016 2017 2018 2014–2018

n % n % n % n % n % N %

LOC 227,655 36.8 215,807 35.2 226,014 36.4 220,506 34.5 193,958 33.4 1,083,940 35.3
RACE 184,732 29.8 210,518 34.4 211,600 34.0 209,781 32.8 188,437 32.4 1,005,068 32.7
CAUSE 17,924 2.9 16,897 2.8 18,557 3.0 19,031 3.0 16,048 2.8 88,457 2.9
BDYPT 7,386 1.2 8,306 1.4 8,876 1.4 8,691 1.4 9,862 1.7 43,121 1.4
TYPE 5,507 0.9 5,359 0.9 4,861 0.8 5,468 0.9 5,450 0.9 26,645 0.9
AGE 199 0.03 254 0.04 251 0.04 238 0.04 198 0.03 1,140 0.04
DISP 16 0.003 6 0.001 7 0.001 204 0.03 15 0.003 248 0.008
SEX 8 0.001 13 0.002 7 0.001 22 0.003 23 0.004 73 0.002
Missing Totalc 346,357 55.9 349,875 57.1 366,692 59.0 368,159 57.6 324,396 55.8 1,755,479 57.1
Non‑missing Totald 272,986 44.1 262,545 42.9 254,880 41.0 271,355 42.4 256,529 44.2 1,318,295 42.9
Total Observations 619,343 612,420 621,572 639,514 580,925 3,073,774
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Fig. 1 Trends in missing proportions for variables with  missingnessa in NEISS‑AIPb data from 2014 to 2018. Patient race/ethnicity (RACE) and 
location of injury (LOC) show the highest proportions of missing data across years (> 30%). aLOC: location where the injury occurred. RACE: race 
and ethnicity of patient. CAUSE: external cause of injury. BDYPT: primary body part affected. TYPE: work‑relatedness. AGE: patient age in year. 
DISP: disposition at emergency department discharge. SEX: gender of patient. bNEISS‑AIP: National Electronic Injury Surveillance System‑All Injury 
Program

Fig. 2 Analyzing missing data patterns of NEISS‑AIPa 2018 data: A. Bar chart of unweighted counts and proportions for both missing and 
non‑missing  datab; B. The Venn diagram for presenting the missing data  patternsb. Note: A (Age) and S (Sex) overlay in Fig. 2B and represent small 
population sizes. A and S both intersect with P (CAUSE) and R (RACE). D (DISP) represents a small population size, and it intersects with L (LOC) 
only.aNEISS‑AIP: National Electronic Injury Surveillance Systems‑All Injury Program. bLOC (L): location where the injury occurred. RACE (R): race and 
ethnicity of patient. CAUSE (P): external cause of injury. BDYPT (B): primary body part affected. TYPE (T): work‑relatedness. AGE (A): patient age in 
year. DISP (D): disposition at emergency department discharge. SEX (S): gender of patient
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Simulation study
Figure 2 displays the proportions of missingness of data 
and data patterns in NEISS-AIP for 2018. More than 30% 
of observations in hospital ED visits were missing infor-
mation on LOC (33.4%) and RACE (32.4%). Missing data 
for other key variables ranged from 2.8% to less than 1% 
(Fig. 2A). In addition, a complex set of overlapping miss-
ing data patterns exists among these missing variables 
(Supplementary Table S2). A Venn diagram (Fig. 2B) was 
developed to visualize all possible logical relationships 
among a finite collection of the different missing sets.

Figure 3 displays the BSS comparison for all the missing 
categorical variables to visualize the imputation perfor-
mance difference using two MI methods (JM and FCS). 
The FCS method far exceeded the JM method in accu-
rately imputing missing data in most instances except for 
TYPE and SEX, where the two performed almost iden-
tically. Overall FCS shows larger BSS than JM, imply-
ing that FCS is associated with more accurate predicted 
probabilities than JM.

To assess the impact of MI on the overall distribution 
of race/ethnicity, we determined the distributions before 
imputation (simulation data) and after imputation (JM 
or FCS imputed data) and compared them with the true 
estimates in the standard control data (Figure S1, Supple-
mentary). Before imputation, the race/ethnicity distribu-
tion is significantly different from the true proportions of 
standard control. After imputation, JM tends to underes-
timate the true proportion for White NH and Other NH, 

and to overestimate the true proportion for Black NH 
and Hispanics. Unlike JM, FCS shows the minimal effect 
on the true overall distribution of race/ethnicity after 
imputation. Adding the FCS imputed cases of race/eth-
nicity to the data has little impact on the known overall 
distribution of the respondents by race/ethnicity.

Table  2 shows the comparison of estimated crude 
rates of nonfatal assault injuries for the White NH group 
under different approaches for addressing missing racial/
ethnic data. Dropping persons with missing race/ethnic-
ity (using CCA) not only causes loss in statistical power 
but also results in significant bias in rate estimation com-
pared to the standard control rate (32.3% absolute devia-
tion from the true rate). After imputation, the absolute 
deviations are calculated as 14.1% for JM imputation and 
only 0.3% for FCS imputation. This simulation provides 
strong evidence that FCS MI generally produces unbi-
ased estimates when compared with the standard con-
trol. FCS MI shows the best overall results for addressing 
high proportions of missingness in NEISS-AIP data.

Assessing disparities using FCS imputed companion data
Table  3 displays the estimated age-adjusted average 
annual rate of nonfatal assault ED visits per 100,000 
population by RACE, LOC, and SEX. For the 2014–2018 
study period, Black NH persons showed a significantly 
higher nonfatal assault injury rate per 100,000 population 
(1306.8) compared to their counterparts (347.8 for White 
NH persons, 366.0 for Hispanic persons, and 291.2 for 

Fig. 3 Brier Skill Score (BSS)a comparison for evaluating imputation performance on simulation  datab by using the different models (JM and FCS). 
aBSS indicates the degree of skill improvement. A BSS range from 0 to 1: 0 means no improvement in accuracy and 1 means a perfect accuracy 
of prediction. bSimulation data was developed by imposing the missing data patterns on the subset of fully observed data in National Electronic 
Injury Surveillance System‑All Injury Program (NEISS‑AIP) 2018. JM: joint modelling. FCS: fully conditional specification. LOC: location where the 
injury occurred. RACE: race and ethnicity of patient. CAUSE: external cause of injury. BDYPT: primary body part affected. TYPE: work‑relatedness. AGE: 
patient age in year. DISP: disposition at emergency department discharge. SEX: gender of patient



Page 7 of 12Liu et al. International Journal for Equity in Health          (2023) 22:126  

Other NH persons). The rate of nonfatal assault injuries 
was significantly higher in a public setting than at home 
(286.3 vs. 200.4). Males also had a significantly higher 
nonfatal assault injury rate compared to females (603.5 
vs. 369.5).

Figure  4 shows the trend for age-adjusted rates per 
100,000 persons of nonfatal assault injuries treated in 
emergency departments by different groups from 2014 to 
2018. The significantly higher nonfatal assault injury rates 
were found for Black NH persons compared with other 
race/ethnicity categories, regardless of year. In addi-
tion, the age-adjusted rates (AAR) for Black NH persons 
increase significantly from 2014 through 2017 (1147.9 
in 2014 vs. 1519.7 in 2017), followed by a significant 

decline in 2018 (1271.7). Similar trends are also observed 
for nonfatal assault injuries occurring in public settings 
and for males. For nonfatal assault injuries occurring 
in public settings, AAR increased from 2014 through 
2017 (264.5 in 2014 vs. 319.9 in 2017) and significantly 
declined in 2018 (276.8). For males, AAR increased from 
2014 to 2017 (592.6 in 2014 vs. 640.1 in 2017) and then 
declined significantly in 2018 (570.2).

Discussion
Eliminating health disparities is a central focus of Healthy 
People 2030 [38]. Injuries are a major public health 
concern, which cause over 200,000 deaths, and 30 mil-
lion individuals are treated for injuries in hospitals and 

Table 2 Comparison of the different missing data strategies in the simulation study: estimating crude rate of nonfatal assault injuries 
treated in EDs (Emergency Departments) per 100,000 population among non‑Hispanic white individuals

The simulation study built on real non-missing data from National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2018 was conducted to identify 
the appropriate MI model for handling missing data

Abbreviations: NH non-Hispanic, CCA  complete case analysis, JM joint modeling, MI multiple imputation, FCS fully conditional specification, EDs Emergency 
Departments
a  Non-missing data was used as standard control data
b  Excludes sexual assault cases
c  Absolute deviation was calculated by using the standard control rate as the reference

Weighted Number of Injuries Crude Rate per 100,000 
Populationb

95% CI Absolute 
Deviationc

|
(Rate−STD)

STD
|

CCA 217,080 244.5 (175.3, 313.7) 32.3%

JM MI 275,609 310.4 (223.3, 397.5) 14.1%

FCS MI 321,759 362.4 (255.0, 469.8) 0.3%

Standard  Controla 320,629 361.2 (257.9, 464.5) ‑

Table 3 Assessing health disparities using Fully Conditional Specification Imputed Companion Data, NEISS‑AIPa, 2014–2018: 
Estimating Age‑adjustedb Average Annual Rate of Nonfatal Assault Injury per 100,000 Population for United States Hospital Emergency 
Department Visits, by Race/Ethnicity, Location of Injury and Sex

a  NEISS-AIP: National Electronic Injury Surveillance System-All Injury Program
b  Age-adjusted to the 2000 U.S. standard population
c  NH: Non-Hispanic
d  Excludes sexual assault cases

Characteristic Categories Unweighted Number 
of  Injuriesd

National Estimate (%) Age‑adjusted Average 
Annual Rate (95% CI)

T‑tests

Total ___ 142,876 7,610,896 (100) 486.7 (352.4, 621.1) ___

Race and Ethnicity Black  NHc 66,765 3,048,912 (40.1) 1306.8 (660.1, 1953.5) Ref

White NH 43,694 3,178,305 (41.8) 347.8 (261.4, 434.1) p = 0.001

Hispanic 24,851 1,046,120 (13.7) 366.0 (136.4, 595.5) p = 0.001

Other NH 7,566 337,560 (4.4) 291.2 (125.1, 457.3) p = 0.001

Location of Injury Public Setting 85,115 4,479,969 (58.9) 286.3 (183.2, 389.4) Ref

Home 57,761 3,130,927 (41.1) 200.4 (162.5, 238.3) p = 0.003

Sex Male 90,683 4,754,049 (62.5) 603.5 ( 409.4, 797.5) Ref

Female 52,193 2,856,846 (37.5) 369.5 (288.7, 450.4) p = 0.002
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emergency departments each year [39]. Significant ineq-
uities exist in injury prevention and control in the US as 
demonstrated by health disparities across age, race, eth-
nicity, region, sex, etc. Preventing injuries in high-risk 

groups can have the biggest influence on achieving health 
equity in injury. To reduce and ultimately eliminate these 
disparities, the first step is understanding what these dis-
parities are and who is affected by them. Investigating 

Fig. 4 Assessing disparities using imputed NEISS‑AIP companion data: trends in age‑adjusteda rates per 100,000 population of nonfatal assault 
injuries treated in emergency departments by (A) race/ethnicity, (B) location of injury, and (C) Sex from 2014 to 2018, United States. aAge‑adjusted 
to the 2000 U.S. standard population. Abbreviations: NEISS‑AIP, National Electronic Injury Surveillance System‑All Injury Program; AAR, Age‑adjusted 
rate; NH, non‑Hispanic



Page 9 of 12Liu et al. International Journal for Equity in Health          (2023) 22:126  

disparities requires an accurate identification and cat-
egorization of individuals into different subgroups [3]. 
Not having key indicators due to missingness, however, 
is a limitation on the use of NEISS-AIP in investigating 
disparities in injury. When data are not available, impu-
tation is a method to attribute missing characteristics 
to specific observations in a data set. To make NEISS-
AIP a more useful and reliable data source for the study 
of health disparities, it is essential to generate imputed 
companion data that will allow public users to perform 
analysis on complete datasets.

Conducting impactful research on injury disparities 
requires availability of comprehensive data. Statistical 
methods for addressing missing values have been actively 
pursued, including maximum likelihood estimation, 
Bayesian estimation, and MI. MI is the only technique 
that is computationally straightforward, versatile, rela-
tively easy to apply, and increasingly available in standard 
statistical software. MI has arguably been the most popu-
lar method for handling missing data in practice [28, 40].

To identify the most appropriate MI model for handling 
missing data in NEISS-AIP, a comprehensive simulation 
study built on real non-missing data from NEISS-AIP 
2018 was conducted. The FCS model performed better 
than the JM model for reporting overall racial/ethnic dis-
tributions that were closest to that of the standard con-
trol and had higher average correct prediction rates. We 
also developed a new BSS method to assess the accuracy 
of probabilistic predictions by different approaches for 
handling missing data. This intuitive BSS comparison 
clearly showed that FCS MI provided the most accurate 
imputed data for all missing categorical variables. This 
is the first application of the developed BSS method for 
assessing imputation performance quantitatively.

Because ignoring the missing race/ethnicity data influ-
ences the identification and magnitude of disparities, we 
further assessed bias by estimating crude rates of nonfa-
tal assault injuries for White NH persons under different 
approaches for addressing high proportion missingness 
of race/ethnicity. Our simulation study provides strong 
evidence that FCS MI yields estimates that are unbi-
ased and provide appropriate coverage. Unlike JM which 
assumes joint multivariate normality for all variables, 
FCS specifies the multivariate imputation model on a 
variable-by- variable basis by a set of conditional densi-
ties, one for each incomplete variable. FCS MI permits 
great flexibility because an appropriate imputation model 
can be selected for each missing variable [29].

Nonfatal assault injury is an important public health 
concern, imposing significant health care costs and 
productivity losses for millions of people each year 
[3, 13]. However, research on disparities in nonfatal 
assault injury has not been well characterized, limiting 

understanding of gaps in research and development of 
successful interventions. Much of the research on injury 
disparities in the United States focuses on the differences 
in injury rates [41]. In this study, we assessed whether 
disparities exist for age-adjusted average annual rates 
of nonfatal assault injury for ED visits by race/ethnic-
ity, location of injury, and sex. Results showed that Black 
NH persons had significantly higher injury rate than 
other race/ethnicity categories (3.8 times higher than 
White NH persons, 3.6 times higher than Hispanic per-
sons, and 4.5 times higher than Other NH persons) for 
the study period (2014–2018). Black NHs persons were 
at disproportionately high risk for nonfatal assault inju-
ries compared with other race/ethnicity groups. These 
results underscore the importance of understanding and 
addressing the underlying inequities, such as limited edu-
cational, housing, and occupational opportunities, con-
centrated poverty, systemic racism, and other aspects of 
social and economic disadvantage, that contribute to risk 
for violence [42, 43]. Injuries occurring in public settings 
had significantly higher average annual rate than injuries 
occurring at home (1.4 times higher). Males had signifi-
cantly higher average annual rate than females (1.6 times 
higher). The trends from 2014 to 2018 in age-adjusted 
nonfatal assault injury rates by different subgroups were 
also investigated. Similar trends were observed for Black 
NH persons, injuries occurring in public settings, and 
males: AARs of nonfatal assault injury increased signifi-
cantly from 2014 through 2017, then declined signifi-
cantly in 2018.

Limitations
Study limitations exist. First, aggregated racial/ethnic 
groups were recorded in our analysis. Hispanic origin 
and race were combined into a single-item format to 
make them compatible with available annual bridged-
race population estimates used as denominators for the 
injury rates. However, collection and reporting of eth-
nic and racial identity as two separate constructs is usu-
ally preferred, further disaggregating race/ethnicity may 
assist in better understanding disparities and in devel-
opment of culturally responsive interventions [4]. Sec-
ond, the statistical literature has defined three types of 
missingness mechanisms: missing completely at random 
(MCAR), missing at random (MAR), and missing not 
at random (MNAR). MI methods generally assume that 
the data is at least MAR, and therefore remains valid if 
observations are MCAR. The MAR assumption is gener-
ally considered to be realistic for well-conducted surveys 
and has been recommended for practical applications 
[27]. The assumption of MAR becomes more reason-
able as more predictors are included in the imputation 
model [44]. As the NEISS-AIP contain high-quality data 
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with a large amount of predictive information, the MAR 
assumption can be justified. However, it is impossible 
to determine whether data are MNAR solely based on 
observed data. The NEISS-AIP are de‐identified to pre-
vent tracking patients for follow‐up or prior information, 
so the MNAR assumption cannot be tested. Bias caused 
by data that are MNAR can be addressed only by sensi-
tivity analyses examining the effect of different assump-
tions about the missing data mechanism, which is outside 
the scope of this study. Third, the estimated non-fatal 
assault injury rates in this study are underestimates of 
the actual prevalence because data are limited to patients 
treated in hospital EDs and do not include those who had 
injuries treated in other health care settings (e.g., physi-
cian’s office or urgent care center) or those for whom no 
treatment was needed or sought. Accordingly, our find-
ings may understate disparities in nonfatal assault injury 
risk.

Conclusions
This study is the first to look at health disparities in non-
fatal assault injuries using multiply imputed companion 
data. The developed methods and imputed data sets can 
also be applied to addressing disparities in other types of 
injuries. Groups at higher risk of an injury outcome could 
be identified for local prevention efforts. Health dispari-
ties are often viewed through the lens of race and ethnic-
ity, but they occur across a broad range of dimensions. 
It is necessary to address the underlying social and eco-
nomic inequities that drive disparities. Communities can 
make use of the best available evidence to prevent multi-
ple forms of injury [45].

In summary, assessing disparities in injury is crucial 
for injury prevention and for evaluating injury preven-
tion strategies. We assessed health disparities in nonfatal 
assault injury by generating multiply imputed compan-
ion data. Beyond the methodological insights, this study 
will also help to advance health disparities research by 
enhancing efforts to quantify, monitor, and develop solu-
tions for assessing disparities in injury.

Appendix
New BSS method for evaluating imputation performance
The Brier Score (BS), which the BSS is developed from, is 
a measure of the mean-square error of prediction [33]. In 
the observed events N, let X be a K-level (K > 1) categori-
cal variable with M missing observations xi (i = 1,….M). 
Denote pij the predicted probability of a specific level j 
(j = 1,…. K) of X.

For MI with 20 iterations, pij = 20
l=1(xil = j)/20 , 

where xil is the imputed value of xi from the lth iteration, 
l = 1,…20. The BS for MI is given as:

where Iij = 1(0), if the true value of xi is (not) j. BS has 
a range of 0 to 1, a smaller BS (closer to zero) implies a 
more precise imputation.

For CCA, denote pi, the predicted probability of X. We 
assume that all the predictions of missing values in the 
categorical variable X are wrong (xi  = j) , which is the 
worst prediction case. The BSref for CCA is given as:

where Ii = 1(0), if the true value of xi is (not) j.
A noted shortcoming of BS is that the score value is 

often hard to interpret, despite it being a widely used sca-
lar summary of accuracy for probability prediction. Con-
sequently, the BS is frequently converted to a skill score, 
normalizing the score by that of a reference prediction 
strategy. BSS indicates the degree of skill improvement. 
It is designed to range from 1.0 for a perfect prediction 
strategy, through 0.0 for one that offers no improvement 
over the reference strategy, to negative values for strate-
gies that are worse than the reference strategy [34, 35]:

Negative skill scores often need to be interpreted with 
caution as they may hide useful information contained 
in the prediction. However, negative skill scores can be 
avoided by selecting the appropriate reference strategy. In 
this study, we chose CCA as the reference strategy (BSref) 
to avoid the negative skill scores for the two MI methods. 
Thus, BSS ranges from 0 to 1, where 0 means no accuracy 
improvement and 1 means a perfect accuracy improve-
ment. As BSS approaches 1, this implies more accurate 
predictions for discrete outcomes in missing variables.
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